PIP2 signaling in lipid domains: a critical re-evaluation.

نویسندگان

  • Jacco van Rheenen
  • Eskeatnaf Mulugeta Achame
  • Hans Janssen
  • Jero Calafat
  • Kees Jalink
چکیده

Microdomains such as rafts are considered as scaffolds for phosphatidylinositol (4,5) bisphosphate (PIP2) signaling, enabling PIP2 to selectively regulate different processes in the cell. Enrichment of PIP2 in microdomains was based on cholesterol-depletion and detergent-extraction studies. Here we show that two distinct phospholipase C-coupled receptors (those for neurokinin A and endothelin) share the same, homogeneously distributed PIP2 pool at the plasma membrane, even though the neurokinin A receptor is localized to microdomains and is cholesterol dependent in its PIP2 signaling whereas the endothelin receptor is not. Our experiments further indicate that detergent treatment causes PIP2 clustering and that cholesterol depletion interferes with basal, ligand-independent recycling of the neurokinin A receptor, thereby providing alternative explanations for the enrichment of PIP2 in detergent-insoluble membrane fractions and for the cholesterol dependency of PIP2 breakdown, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium-dependent lateral organization in phosphatidylinositol 4,5-bisphosphate (PIP2)- and cholesterol-containing monolayers.

Biological membrane function, in part, depends upon the local regulation of lipid composition. The spatial heterogeneity of membrane lipids has been extensively explored in the context of cholesterol and phospholipid acyl-chain-dependent domain formation, but the effects of lipid head groups and soluble factors in lateral lipid organization are less clear. In this contribution, the effects of d...

متن کامل

Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening.

Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein-protein interactio...

متن کامل

New and Notable Switching Sides: The Actin/ Membrane Lipid Connection

Cell surface membrane proteins and lipids engage underlying actin filaments in complicated ways. The players engaged are known, and it is clear that the terms of their engagement are important for membrane functions such as endocytosis and receptor-mediated signaling. However, little is known about the way membrane bilayer and membrane skeleton mutually influence one another in these functions....

متن کامل

A dPIP5K Dependent Pool of Phosphatidylinositol 4,5 Bisphosphate (PIP2) Is Required for G-Protein Coupled Signal Transduction in Drosophila Photoreceptors

Multiple PIP2 dependent molecular processes including receptor activated phospholipase C activity occur at the neuronal plasma membranes, yet levels of this lipid at the plasma membrane are remarkably stable. Although the existence of unique pools of PIP2 supporting these events has been proposed, the mechanism by which they are generated is unclear. In Drosophila photoreceptors, the hydrolysis...

متن کامل

PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating

Voltage-gated potassium (Kv) channels contain voltage-sensing (VSD) and pore-gate (PGD) structural domains. During voltage-dependent gating, conformational changes in the two domains are coupled giving rise to voltage-dependent opening of the channel. In addition to membrane voltage, KCNQ (Kv7) channel opening requires the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2). Recent stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 24 9  شماره 

صفحات  -

تاریخ انتشار 2005